

Vitamin D and Nutritional Management of Patients in Fracture Liaison Services and Vitamin D Status in Qatar

Prof. René Rizzoli M.D.

Dr. Omar Alsaed M.D.

Speaker Introduction

Prof. René Rizzoli M.D.

- Prof. René Rizzoli is an internist and endocrinologist, with a subspecialty focus on metabolic bone diseases, osteoporosis and disorders of mineral metabolism. He is emeritus professor of medicine at the University Hospitals of Geneva, and former head of the service of bone diseases.
- Prof. Rizzoli is currently the IOF Treasurer and former Chairman of the Committee of Scientific Advisors of the IOF.
- He is also the Chairman of the Scientific Advisory Board of the ESCEO and co-chairs the scientific program committee of the annual IOF-ESCEO congress.
- Throughout his extensive career, Prof. Rizzoli has been involved in both basic and clinical research projects investigating pathophysiology of osteoporosis and of calcium and phosphate homeostasis disorders, the role of nutrition, calcium, protein, bisphosphonates among other topics. He is author of more than 900 scientific articles, Editor-in-Chief of *Calcified Tissue International & Musculoskeletal Research* and associate editor of *Osteoporosis International*.

International Osteoporosis Foundation Webinar, February 3rd 2021

Vitamin D and nutritional management of patients in Fracture Liaison Services

Prof René Rizzoli M.D.

Division of Bone Diseases Geneva University Hospitals and Faculty of Medicine Geneva, Switzerland

Disclosure

Speaker Bureau or Member of Scientific Advisory Board for Abiogen, Danone, Echolight, EMF, Mithra, ObsEva, Pfizer Consumer Health, Radius Health, Sandoz, Theramex

Adapted from Rizzoli, Best Pract Res Clin Endocrinol Metab 2014

Circulating calcifediol (250HD) levels in patients admitted to orthopedic wards for fragility fracture

Study	Country	Population	Mean (SD) age,	Mean (SD)	% 25(OH)D
		(% female)	years	25(OH)D	<50 <u>nmol</u> /l
				nmol/l	
Awal et al. {Awal, 2020}#	Australia	313	79.5		34
Hao et al. {Hao, 2020}*	USA	290 (73)	82 (7)	55 (24)	46
Bischoff-Ferrari et al. {Bischoff-Ferrari, 2008}*	Switzerland	222 (77)	86	34.6 (community)	80
				24 (nursing	
				homes)	
Cher et al. {Cher, 2020}*	Singapore	801 (71)	77.7 (8)	-	47.4
Niikura et al. {Niikura, 2019}*	Japan	360 878)	84.7 (8.2)	41.3 (18)	71.7
Papaiannou et al. {Papaioannou, 2011}*	Canada	65 (56)	78.5 (10.3)	52.3	
Ish-Shalom et al. {Ish-Shalom, 2008}	Israel	48 (100)	81 (89	39.3 (25.3)	-
Mak et al. {Mak, 2014}*	Australia	218 (77)	83.9 (7.2)	52.7 (23.5)	47
Moo et al. {Moo, 2020}*	Singapore	796 (71)	77.7 (8)	50.1 (18.5)	53.9

*Proximal femur fracture ; 'Hip fracture

Bischoff-Ferrari et al Bone 2008

Vitamin D and Calcium for the Prevention of Fracture A Systematic Review and Meta-analysis

Meta-analysis of **Observational Studies** of Risk of Any Fracture or of Hip Fracture Associated With an Increase of 25 nmol/L in Blood 25-Hydroxyvitamin D Concentration

Source	Baseline 25-Hydroxyvitamin D, nmol/L	Cases No./ Total Participants, No.	Degree of Adjustment	Rate Ratio (95% CI)	High Level Favors Low Risk	Low Level Favors Low Risk	Weight, %
Any fracture				78			
Looker, ²⁸ 2013	59.8	525/4749	+++	0.61 (0.45-0.82)	• • • · · · ·		1.3
Buchebner et al, ²⁹ 2014	62.0	349/1044	***	0.80 (0.67-0.95)			4.2
Barbour et al, ³⁰ 2012	60.6	247/2614	++++	0.88 (0.75-1.04)			4.7
Robinson-Cohen et al, 31 2011	62.8	244/2294	++++	0.90 (0.76-1.05)			4.7
Holvik et al, ³² 2013	55.9	1175/2613	++	0.85 (0.75-0.97)			7.9
Steingrimsdottir et al, 33 2014	53.6	261/5764	++++	0.76 (0.68-0.86)			8.6
Cauley et al, ³⁴ 2011	53.5	1132/2264	++++	0.99 (0.88-1.12)	4		8.9
Swanson et al, 36 2015	62.3	432/1000	****	1.01 (0.92-1.11)		-	13.6
Roddam et al, ³⁷ 2007	81.0	730/2175	+++	0.99 (0.91-1.09)	+	-	15.5
Julian et al, ³⁸ 2016	58.1	1183/14624	****	0.96 (0.90-1.02)			30.6
All		6278/39141		0.93 (0.89-0.96)			100.0
Subtotal (Q=31.0, df=9, P<.00	1; <i>I</i> ² = 71.0%)						
Hip fracture							
Looker, ²⁸ 2013	59.8	287/4749	+++	0.53 (0.38-0.73)	•		4.7
Cauley et al, 34 2011	57.8	400/800	++++	0.75 (0.60-0.95)			9.4
Robinson-Cohen et al, 31 2011	62.8	244/2294	****	0.90 (0.76-1.05)		-	19.1
Holvik et al, ³² 2013	55.9	1175/2613	++	0.85 (0.75-0.97)			32.1
Steingrimsdottir et al, 33 2014	53.6	261/5764	++++	0.76 (0.68-0.86)			34.7
All		2367/16220		0.80 (0.75-0.86)	\diamond		100.0
Subtotal (Q=10.0, df=4, P=.04	; <i>I</i> ² = 59.9%)						
				0.	5 Rate Ratio (955	l 1.5 % Cl)	

Yao et al JAMA Netw Open 2019; 2: e1917789.

U-Shaped Association Between Serum 25-Hydroxyvitamin D and Fracture Risk in Older Men: Results From the Prospective Population-Based CHAMP Study

Quintiles of serum 250HD

Bleicher et al JBMR 2014

NHANES III: n = 4100 community –dwelling older individuals age 60+

Effect was similar between more or less active individuals, men or women, calcium intake

Bischoff-Ferrari HA, et al. Am J Clin Nutr. 2004;80:752–758.

Nutritional Status and Nutritional Treatment Are Related to Outcomes and Mortality in Older Adults with Hip Fracture

Table 1. Prevalence of malnutrition or risk of malnutrition and nutritional screening tool used in the included studies.

Reference	Total	WN	RMN	MN	Cut-Off for Malnutrition	
	n	n	n	n		
[21]	17,651	9549	170	8102	Albumin $< 3.5 \text{ g/dL}$	
[22]	173	49	-	57	$BMI < 22 \text{ kg/m}^2$	
[23]	23	9	7	7	BMI ⁺	
[20]	96	59	-	37	$BMI < 18.5 \text{ kg}/\text{m}^2$	
[24]	60	34	128	26	Weight loss \geq 5% 1 m, or \geq 10% 6 m, and/or albumin < 2.7 g/dL	
[14]	25	11	11	3	Hospital's own screening tool §	
Total of subjects	18,028	9711	18	8232		
Percentage		53.9%	(45.7%		
Patamana	Total	WN	RMN	MN	Cut Off for Molnutrilion	
Kererence	n	n	n	n	Cut-Off for Mainutrition	
[15]	49	18	23	8	MNA [‡]	
[19]	80	38	35	7	MNA	
[25]	127	89	36	2	MNA	
[17]	50	32	18	0	MNA	
[26]	50	7	29	14	MNA	
[27]	97	44	37	16	MNA	
[28]	162	59	-	103	MNA	
[29]	152	87	-	65	MNA	
[18]	215	95	95	25	MNA-SF [¥]	
[30]	204	55	98	51	MNA-SF	
[31]	594	316	236	42	MNA-SF	
[32]	415	152	185	78	MNA-SF	
Total of subjects	2195	992	774	411		
Percentage		45.2%	35.3%	18.7%		

Malafarina et al Nutrients 2018

Association between Protein Intakes and Fracture Risk

15% of Total Energy Intakes -> 0.9 g/kg BW if 1'600 Kcal

Langsetmo et al J Nutr Health Aging 2015

Peripheral skeleton bone strength is positively correlated with total and dairy protein intakes in healthy postmenopausal women^{1,2}

Durosier-Izart et al AJCN 2017

Adapted from Rizzoli, Best Pract Res Clin Endocrinol Metab 2014

Vitamin D status and adult fracture healing

Incidence of clinical and radiological delayed union in patients with extremity fractures, by vitamin D status.

Delayed union ^a	Initially not vitamin D deficient	Initially vitamin D deficien	t status after supplementation	
		Not vitamin D deficient	Still vitamin D deficient	p^{b}
Clinical	1/382 (0.3%)	2/117 (1.7%)	3/30 (9.7%)	<0.001
Radiological	20/42 (48%)	11/21 (52%)	4/6 (67%)	0.67
water and the second	20 MA 100 AD 0001MU AD AD AD AD AD AD AD AD			

Gorter et al J Clin Orthop & Trauma 2017

Vitamin D deficiency is associated with reduced mobility after hip fracture surgery: a prospective study

TABLE 2 Association between preoperative vitamin D status and outcomes after hip fracture surgery1

	< 30 nmol/l		Vitamin D concentration		
	<12 ng/mL	12 to <20 ng/mL	20 to <30 ng/mL	≥30 ng/mL	P overall
Ability to walk					
30 d, % who walk	35	56	64	58	
Unadjusted OR (95% CI)		2.30 (1.03, 5.17)	3.24 (1.45, 7.26)	2.57 (1.04, 6.36)	0.040
Adjusted OR (95% CI)	_	2.61 (1.13, 5.99)	3.48 (1.53, 7.95)	2.84 (1.12, 7.20)	0.031
60 d. % who walk	51	67	74	73	100000000
Unadjusted OR (95% CI)		1 89 (0 86 4 15)	2 70 (1 22 5 95)	2 62 (1 05 6 55)	0.079
Adjusted OR (95% CI)	_	2.67 (1.14, 6.25)	3.42 (1.46, 8.00)	3.67 (1.37, 9.82)	0.028
TABLE 1 Baseline characteristics of patients ¹		2.07 (111), 0.22)	and (may along)	5.67 (1.57, 7.62)	0.020
	Values		50–75 nmol/l		
	02 1 7 (65 102)				
Age, y	$82 \pm 7(65 - 102)$				
Caucasian race %	73				
BMI ka/m ²	95 24 5 + 4 7 (12 9-50 8)				
<18.5 (underweight) %	24.0 ± 4.7 (12.9-50.0) 6	100/ 150	1./1		
18.5 to <25.0 (normal weight), %	54	46% ≤ 50 nm	OI/I		
25.0 to <30.0 (overweight), %	30				
≥30 (obese), %	10				
25-Hydroxyvitamin D, ng/mL	22.0 ± 9.6 (2.9-57.4)				
<12, %	12				
12 to <20, %	34				
20 to <30, %	37				
≥ 30, %	17				
Intact parathyroid hormone, pg/mL	55.1 ± 44.3 (4.4-326.5)				
≤65 (normal), %	74				
>65 (high), %	26				
Albumin, g/dL	3.7 ± 0.5 (2.2–5.1)				
Geriatric Nutritional Risk Index	95.1 ± 7.7 (67.5-117.5)				
<92 (major/moderate risk), %	34	67% -> Rick	of Malnutrition	Hoo at al A IC	N12020
92 to ≤98 (some risk), %	33			nau et al AJU	V 2020
>98 (no risk), %	33				

Low Protein Intake Is Associated With Impaired Titanium Implant Osseointegration

Dayer et al JBMR 2006

The relationship between nutritional status of hip fracture operated elderly patients and their functioning, comorbidity and outcome

Koren-Hakim et al Clin Nutr 2012

Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial.

Changes (% baseline value)	Placebo	Protein supplementation (1)	Р
Prealbumin	$+56 \pm 9$	$+86 \pm 14$	0.07
IGF-I	+ 34 ± 7	+ 86 ± 15	0.01
IgM	$+40 \pm 6$	$+ 66 \pm 9$	0.02
Proximal femur (BMD)	-4.7±0.8	-2.3 ± 0.7	0.03
Rehabilitation department stay: median length			
(days)	54	33	0.02

(1) Protein supplementation was with 20 g of protein per day. Both protein supplementation and the placebo supplied 550 mg of calcium per day. Each subject recieved 200,000 IU vitamin D at study initiation.

Median LoS: - 33%

Nutritional supplementation for hip fracture aftercare in older people (Review)

Outcome	Trials (n)	Relative Risk with Oral Nutritional Supplements	95 % CI
Mortality (1-12 months follow-up)	15	0.81	0.49-1.31
Complications (pressure sore, infections)	11	0.71	0.59-0.86
Unfavourable outcome (deaths & complications)	6	0.67	0.51-0.89
GI side effects	6	0.99	0.47-2.05

Avenell et al Cochrane Database of Systematic Reviews 2016

Adapted from Rizzoli, Best Pract Res Clin Endocrinol Metab 2014

Vitamin D and Calcium for the Prevention of Fracture A Systematic Review and Meta-analysis

Meta-analysis of Randomized Clinical Trials of Supplementation With Calcium Plus Vitamin D vs Placebo or No Treatment for Prevention of Any Fracture or of Hip Fracture

	Calcium+	Vitamin D		Control					
Source	Calcium, mg/d	Vitamin D, IU/d	Events, No./ Total Participants, No.	Events, No./ Total Participants, No.	Risk of Bias	Rate Ratio (95% CI)	Favors Calcium + Vitamin D	Favors Control	Weight, %
Any fracture									
Chapuy et al, ⁵⁰ 2002	1200	800	70/393	35/190	High	0.96 (0.61-1.51)	5 · · · · · · · · · · · · · · · · · · ·	•	1.6
Porthouse et al, ⁵¹ 2005	1000	800	58/1321	91/1993	High	0.96 (0.69-1.34)			2.8
Salovaara et al, ⁵² 2010	1000	800	86/1586	103/1609	High	0.84 (0.63-1.13)		<u></u>	3.7
Grant et al,47 2005	1000	800	179/1306	192/1332	High	0.94 (0.76-1.17)			6.6
Chapuy et al, ⁵³ 1992	1200	800	160/1634	215/1636	High	0.72 (0.58-0.89)	· · · · · · · · · · · · · · · · · · ·	and the second second	7.0
Jackson et al, ⁵⁴ 2006	1000	400	2102/18176	2158/18106	Low	0.97 (0.91-1.03)		÷	78.3
All			2655/24416	2794/24866		0.94 (0.89-0.99)			100.0
Subtotal (Q=7.3, df=5,)	P = .20; I ² = 3	31.4%)							
Hip fracture									
Salovaara et al, ⁵² 2010	1000	800	4/1586	2/1609	High	1.98 (0.40-9.81)	· · · · ·	· ·	0.9
Porthouse et al, ⁵¹ 2005	1000	800	8/1321	17/1993	High	0.72 (0.32-1.61)	• •	+ +	3.4
Chapuy et al, ⁵⁰ 2002	1200	800	27/393	21/190	High	0.58 (0.31-1.08)	· • • • •		5.5
Grant et al,47 2005	1000	800	46/1306	41/1332	High	1.15 (0.75-1.76)	· · · · · · · · · · · · · · · · · · ·		12.0
Chapuy et al, ⁵³ 1992	1200	800	80/1634	110/1636	High	0.72 (0.53-0.96)			25.5
Jackson et al, ⁵⁴ 2006	1000	400	175/18176	199/18106	Low	0.87 (0.71-1.07)		<u>+</u>	52.7
All			340/24416	390/24866		0.84 (0.72-0.97)	\triangleleft		100.0
Subtotal (Q = 6.0, df = 5, /	P = .31; / ² = 1	16.5%)							
							0.5	1 1.5	
							Rate Ratio (9	5% CI)	

Yao et al JAMA Netw Open 2019; 2: e1917789.

Dietary Protein Intake above the Current RDA and Bone Health: A Systematic Review and Meta-Analysis

Wallace & Frankenfeld JACN 2017

Alterations of Protein Use in Older Persons

Recommended: 0.8 g/kg BW (RDA) -> 1.1 – 1.3 g/kg BW

Bauer et al JAMDA 2013

Osteoporosis Diagnosis and Management

2019 European Guidance

Lifestyle

- Nutrition: calcium 800-1000 mg/day, protein ≥ 1g/kg BW/ day
- Vitamin D: 800 IU/day
 - Daily weight-bearing physical activity
 - Fall prevention measures

From Kanis, Cooper, Rizzoli, Reginster Osteoporos Int 2019, ACER 2019, CTI 2019

Protein equivalents

One fracture leads to another

- A prior fracture at any skeletal site doubles future fracture risk
- 2nd fracture often happens within 6-8 months

More Fractures

WORLD CONGRESS ON OSTEOPOROSIS, OSTEOARTHRITIS AND MUSCULOSKELETAL DISEASES

2021 LONDON

August 26-29, 2021

London | United Kingdom Hilton London Metropole

WORLD'S LEADING CLINICAL CONFERENCE ON BONE, JOINT AND MUSCLE HEALTH Congress Organizer Sinklar Congress Management B.V.

Congress Organizer Sinklar Congress Management B. Congress Secretariat www.humacom.com

www.WCO-IOF-ESCEO.org

Speaker Introduction

Dr. Omar Alsaed M.D.

- Dr. Omar Alsaed is an Associate Rheumatology Consultant at the Rheumatology Division of the Hamad General Hospital, an operation of the Hamad Medical Corporation. Having graduated from Misr University for Science and Technology in Cairo, Egypt, Dr. Alsaed completed the Internal Medicine Residency Program and a Rheumatology Fellowship training at Hamad Medical Corporation.
- Dr. Alsaed is certified by the Internal Medicine Arab Board and is a member of the Royal College of Physicians in the UK.
- With a strong interest in research, he has initiated and received grants from the Medical Research Center of Hamad Medical Corporation for many research projects in the Rheumatology and Osteoporosis fields.
- Dr. Alsaed is also a team member of the Osteoporosis Task Force in Qatar.

Vitamin D status in Qatar

Omar Alsaed

Disclosure:

I have no conflict of interest related to the following presentation.

Outline

- Recommended vitamin D level across primary and secondary/tertiary centers.
- Vitamin D testing kit in primary and tertiary centers.
- Prevalence of Vit D deficiency and insufficiency in Qatar.

Vitamin D level cut off definitions in Qatar

The laboratory of primary and tertiary centers in Qatar are following the below definitions of vitamin D level:

➢ Vitamin D <20 ng/ml (50 nmol/L) is defined as deficiency.</p>

Vitamin D 20-30 ng/ml (50 -75 nmol/L) is defined as insufficiency.

Vitamin D >30 ng/ml (>75 nmol/L) is defined as sufficient.

Vitamin D testing in Qatar

- There are two main labs that run 25-hydroxy vitamin D level in all primary health care centers and secondary and tertiary centers.
- Both labs are using Elisa technique (ROCH and Beckman kit).
- Our labs are accredited by College of American Pathologist and under regular quality control (3 time per year) by CAP.

Prevalence of Vit D deficiency and insufficiency in Qatar

Journal of Public Health Research 2012; volume 1:e36

Reviews and Meta-Analysis

Prevalence of vitamin D insufficiency in Qatar: a systematic review

Alaa Badawi,^{1,2} Paul Arora,^{2,3} Eman Sadoun,⁴ Al-Anoud Al-Thani,¹ Mohamed H. Al Thani¹ ¹Public Health Division, Supreme Council of Health, Doha, Qatar; ²Office of Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, Ontario, Canada; ³Dalla Lana School of Public Health, University of Toronto, Ontario, Canada; ⁴Clinical Research Division, Supreme Council of Health, Doha, Qatar

- 8 studies were included in this metanalysis.
- Search was done from 1980 to 2012.
- Vitamin D insufficient/deficient was defined as subjects with Vit D less than 75 nmol (<30nmol/L).</p>

Systematic review 1980-2012

Table 2. Average vitamin D serum levels and deficiency/insufficiency in the Qatari population at different age groups.

Age g Years*	roup n	Study	Study n	Average serum vitamin D levels (nmol/L)	Prevalence of vitamin D <75nmol/L (%)
<16	698	Bener <i>et al.</i> ^{42,43#} Bener <i>et al.</i> ³⁷ Racinais <i>et al.</i> ³⁹ Weighted average [§]	170 464 64	$\begin{array}{c} 46.2 \pm 23.0 \\ 66.9 \pm 24.7 \\ \text{NS} \\ (60.6 \text{-} 62.2) \\ 61.4 \pm 10.0 \end{array}$	$8583100(85.9-86.4)86.2\pm2.4$
16-30	163	Hamilton <i>et al.</i> ⁴⁰ Shrief and Rizk ³⁸ Weighted average	92 71	NS NS ^	$ 100 \\ 97 \\ 93.9 \pm 5.3 \\ (93.5 - 94.3) $
>30	838	Mahdy <i>et al.</i> ⁴¹ El-Menyar <i>et al.</i> ⁴⁴ Weighted average	340 498	$\begin{array}{c} 29.2\\ 35.9 {\pm} 27.5\\ 33.2 {\pm} 3.4\\ (31.9 {-} 32.5)\end{array}$	97 91 93.4±3.1 (93.1-93.6)
O verall°	1699	Weighted overall average)	$45.3 \pm 14.3^{\$}$ (44.6-46.0)	90.4±7.2** (90.1-90.8)

Open access

Research

BMJ Open Vitamin D status among adults (18–65 years old) attending primary healthcare centres in Qatar: a cross-sectional analysis of the Electronic Medical Records for the year 2017

Abdul-Jaleel A Latif Zainel,[®] Hamda Qotba, Ahmed Al Nuaimi, Mohamed Syed

- ➢ Include adult >18.
- ➤ 102,342 subjects were included in the analysis.
- Severe Vit D deficiency < 10 ng/ml.
- Vit D deficiency <20 ng/ml.</p>
- Vit D insufficiency <30 ng/ml.</p>

Cross-sectional study

 Table 2
 The prevalence of selected outcomes based on different serum vitamin D cut-off values for study participants with no evidence of vitamin D therapy before testing stratified by sociodemographic variables

	Total	Severe vitamin D deficiency Vitamin D deficie		deficiency	ıcy Vitamin D insufficiency		
	Ν	Ν	%	Ν	%	Ν	%
Age group in years							
18–29	17862	4712	26.4	14610	81.8	17036	95.4
30–39	22788	2951	12.9	16565	72.7	21276	93.4
40–49	16808	1536	9.1	11482	68.3	15522	92.3
50–65	13234	775	5.9	7847	59.3	11711	88.5
Gender							
Female	44773	7459	16.7	32649	72.9	41 328	92.3
Male	25916	2514	9.7	17852	68.9	24214	93.4
Nationality							
Other nationalities	51 158	6277	12.3	36344	71	47905	93.6
Qatari	19534	3697	18.9	14160	72.5	17640	90.3

Prevalence rate of vitamin D insufficiency, deficiency and severe deficiency among treated and untreated study participants

Vitamin D level status in the regional countries

Internal audit to test PTH suppression at different Vit D level intervals

- 54,828 sets of Vit D and PTH tests were processed from the same blood extraction from Jan 2017 till December 2019.
- Patients with chronic kidney disease, primary parathyroid diseases, metastatic bone malignancies, Vit D toxicosis and pregnant patients were excluded.
- ➤ 19,137 sets of Vit D and PTH tests were analyzed.

Internal audit to test PTH suppression with different Vit D level intervals

ANOVA analysis of different Vit D level intervals with corresponding p value and 95% CI

Vit D level intervals	P Value (Ref. Vit D > 50)	95% confidence interval		
<10	0.000	14.566	25.166	
11 - 15	0.000	8.577	18.797	
16 - 20	0.000	5.181	15.317	
21 - 25	0.000	3.177	13.468	
26 - 30	0.005	1.109	11.674	
31 - 35	0.322	-1.335	9.817	
36 - 40	0.263	-1.226	10.612	
46 - 50	1.000	-6.662	8.381	

Conclusion: The optimum PTH suppression is observed at Vit D of 30 ng/ml and above. PTH level will not be suppressed significantly more beyond Vit D level of 30 ng/ml

References

- AL-DABHANI, K., TSILIDIS, K. K., MURPHY, N., WARD, H. A., ELLIOTT, P., RIBOLI, E., GUNTER, M. & TZOULAKI, I. 2017. Prevalence of vitamin D deficiency and association with metabolic syndrome in a Qatari population. *Nutr Diabetes*, 7, e263.
- BADAWI, A., ARORA, P., SADOUN, E., AL-THANI, A. A. & THANI, M. H. 2012. Prevalence of vitamin d insufficiency in qatar: a systematic review. *J Public Health Res*, 1, 229-35.
- ZAINEL, A. A. L., QOTBA, H., AL NUAIMI, A. & SYED, M. 2019. Vitamin D status among adults (18-65 years old) attending primary healthcare centres in Qatar: a cross-sectional analysis of the Electronic Medical Records for the year 2017. *BMJ Open*, 9, e029334.

Thank You

Thank you to our CTF sponsor for this webinar

Lilly

Our vision is a world without fragility fractures, in which healthy mobility is a reality for all.

Join us

- https://www.capturethefracture.org/
 - facebook.com/iofbonehealth/
- instagram.com/international_osteoporosis/
 - twitter.com/iofbonehealth/
 - youtube.com/iofbonehealth/
- P
- pinterest.com/iofbonehealth/
- in linkedin.com/company/international-osteoporosis-foundation/